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GLYCANS AS BIOMARKERS: STATUS AND PERSPECTIVES
GLIKANI KAO BIOMARKERI: STATUS I PERSPEKTIVE

Miroslava Jankovi}

Institute for the Application of Nuclear Energy – INEP, University of Belgrade, Serbia

Kratak sadr`aj: Glikozilacija proteina je univerzalna i slo -
`e na ko- i post-tran slaciona modifikacija koja dovodi do for -
miranja glikana, tj. oligosaharidnih lanaca koji su kovalentno
vezani za poli pep tidnu ki~mu. Dobro je poznat zna~aj pro -
me na u glikozilaciji proteina za nastanak, razvoj i krajnji ishod
razli~itih bolesti kod ljudi. Glikani se smatraju jedinstvenim
strukturama za di jag nozu, i pra}enje toka bolesti. U »omics«
eri,  glikom, glika n ski analog proteoma i genoma, predstavlja
mogu}i izvor no vih biomarkera. Kreiranje strategije za otkri}e
biomarkera zahteva nove principe i platforme za analizu rela -
tivno malih koli~ina brojnih glikoproteina. O~ekuje se da gli -
komske teh no logije, koje su jo{ u razvoju, a koje obuhvataju
razli~ite tipove masene spektrometrije i afinitivnih tehnika, re -
zultiraju novim analiti~kim procedurama u oblasti odre |i va -
nja bio markera. Najve}i izazovi za eksperimentalnu i kli ni~ku
gliko pro teomiku su: pretraga razli~itih tipova gliko mo lekula,
oda bir potencijalnih markera i njihova selekcija ili pre ~i{}a -
vanje i identifikacija. Za ovo je neophodno razviti teh no logije
koje }e omogu}iti visoku senzitivnost detekcije biomarkera
kao i odgovaraju}u standardizaciju i validaciju novih metoda,
kako bi se one mogle primeniti u laboratorijskom radu. Dalji
razvoj na polju primenjene glikonauke zahteva integrisani
sistemski pristup sa ciljem da se na pravi na~in iskoriste sve
njene mo gu}nosti u dijagnostici.

Klju~ne re~i: biomarkeri, dijagnostika, glikani, glikom, hete -
rogeni analiti, kancer

Bioinformative potential of glycans 

Over 70% of all human proteins are glycosylated
and they form a major part of the human serum pro -
teome (1, 2). Glycoproteins comprise enzymes, anti -

bodies, hormones, cytokines, receptors and various
struc   tural proteins. Glycosylation is a ubiquitous and
most important co- and post-translational modification
leading to the formation of very heterogeneous and
struc turally complex glycans, i.e. oligosaccharide chains
covalently linked to polypeptides (3–6). It is known that
thirteen monosaccharides and eight amino acids are
involved in glycoprotein linkages, while at least 41
bonds including anomeric configurations, phosphogl y -
cosyl linkages, C-mannosylation as well as GPI (glyco -
sylphosphatidylinositol anchors) can be formed. Among
monosaccharides, the basic building blocks for glycans,
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Summary: Protein glycosylation is a ubiquitous and com -
plex co- and post-translational modification leading to glycan
formation, i.e. oligosaccharide chains covalently attached to
peptide backbones. The significance of changes in glycosy -
lation for the beginning, progress and outcome of different
human diseases is widely recognized. Thus, glycans are con -
si dered as unique structures to diagnose, predict suscep ti bi -
lity to and monitor the progression of disease. In the »omics«
era, the glycome, a glycan analogue of the prote ome and
genome, holds considerable promise as a source of new
biomarkers. In the design of a strategy for biomarker disco -
very, new principles and platforms for the analysis of rela -
tively small amounts of numerous glycoproteins are needed.
Emerging glycomics technologies comprising different types
of mass spectrometry and affinity-based arrays are next in
line to deliver new analytical procedures in the field of bio -
markers. Screening different types of glycomolecules, selec -
tion of differentially expressed components, their enrichment
and purification or identification are the most challenging
parts of experimental and clinical glycoproteomics. This
requires large-scale technologies enabling high sensitivity,
proper standardization and validation of the methods to be
used. Further progress in the field of applied glycoscience
requires an integrated systematic approach in order to
explore properly all opportunities for disease diagnosis.

Keywords: biomarkers, cancer, diagnostic, heterogeneous
analytes, glycans, glycome 



the most common are hexopyranoside, acetamido su -
gars, 6-deoxy hexoses and sialic acid. Generally, varia -
tion in the sequence of monosaccharides in oligo sac -
charide chains, as well as the possible formation of
different linkages, isomers and branching patterns or
postglycosylation modifications of sugars, have enabled
them to carry more variation than either nucleotides or
amino acids, i.e, to have enormous bioinformative co -
ding potential. Moreover, at the level of individual glyco -
proteins, both N-linked and O-linked glycans can be
attached and heterogeneous glycosylation can occur.
This means that the structural composition can vary
from molecule to molecule, resulting in the existence of
diverse glycoforms of the same glycoprotein. The pre -
sence of various glycoforms leads to functional diversity
and there is no single unifying function for the carbo -
hydrates present in glycoproteins (7).

Much potential biochemical/biological informa -
tion can be hidden in the oligosaccharide chains (6, 7).
Complex carbohydrates (glycans) markedly influence
the physico-chemical (biochemical) properties of a
molecule, in terms of maintenance of conformational
stability and protection from proteolysis, but they are
also important as recognitive determinants influencing
antigenic properties, the control of intracellular trans -
port, secretion (clearance and targeting) and biological
activity by modifying interactions with other molecules.
Moreover, glycans are considered as tags indicating the
age of molecules, their origin in relation to cells, tissue
or species, and in differentiation of self from non-self.

The meaning of the extreme structural diversity of
glycans is explained by the introduction of the concept
of a sugar code (8–10). According to this, glycans act
as information-storage molecules and places for the
exchange of this information, at the level of soluble,
secreted or membrane-bound structures. In sharp
contrast to the linear and rigid genetic or amino acid-
generated codes, the glycocode implies correct two-
dimensional combinations of monosaccharides. Since
glycan structure is dynamically changed by many
factors, such as extra- or intra-cellular stimuli, the
glycocode is not strict, but flexible enough to adopt
different conformations. However, the preservation of
native glycan structures is essential for proper recog -
nition by different types of carbohydrate-binding pro -
teins, such as lectins, i.e. for deciphering the glyco -
code. Protein–carbohydrate interactions have not only
biological, but also medical consequences, since they
represent key steps involved in the control of cell
homeostasis and its social doings (10). Thus, they are
involved in sperm–egg interactions, host–pathogen
inter  actions, leukocyte trafficking, blood clotting, apop -
tosis, attachment and invasion of cancer cells, etc.
Con sequently, understanding and implementation of
basic research on human glycans in clinical applica -
tions as tools and targets for diagnosis or therapy are
one focus of contemporary medical glycobiology. 

Biomedical implications of glycosylation

Glycosylation and disease

Glycan biosynthesis involves different types of gly -
co syltransferases, glycosidases and sugar nucleotides
(3, 4). These enzymes and corresponding substrates
are often expressed in a cell- and growth-specific man -
ner, affecting the relative amounts and structures of
glycans. Glycosylation is not template-driven, but is in -
directly controlled by a number of genes, i.e. 1 % of the
translated genome participates in oligosaccharide synt -
hesis and function. Dynamic structural alterations of
oligosaccharide chains have been implicated in a va rie -
ty of diseases, and they reflect a reprogramming of the -
se complex control mechanisms, at early, inter me diate
and mainly late glycoprotein processing steps (5, 11).

Enzyme abnormalities associated with alterations
in distinct glyco-structures have been found in different
types of leukemia and hematopoietic diseases, in
carbohydrate deficiency diseases, leukocyte adhesion
de ficiencies, cystic fibrosis, diabetes, intestinal inflam -
matory and liver diseases, osteoarthritis, rheumatoid
arthritis, thrombosis, etc. The disease implication of
glyco peptide bonds was shown to be related to both N-
and O- bonds, as well as glypiated linkages (5). One
well-known example, including a broad clinical spec -
trum of patients, is congenital disorders of glycosylation
(CGD) caused by defects in the synthesis and pro -
cessing of N-linked glycans, mainly due to enzymatic
defects responsible for dolichyl pyrophosphate oligo -
sac charide assembly (12, 13).    

Changed activity of GDP-mannose- 4,6- dehydra -
tase, i.e. lack of GDP-Fuc (fucose) resulting in impaired
formation of Fuc Ser/Thr, is responsible for leukocyte
adhesion deficiency type II, and closely related disor -
ders, with subsequent recurrent infection as well as
severe mental and growth retardation (14). 

Formation of O-glycosidic bonds by addition of
GlcNAc (N-acetylglucosamine) or Glc (glucose) on
spe cific Thr residues in proteins that belong to the Rho
family of mammalian GTP-ases, is known to be caused
by microbial (clostridial) cytotoxins. They are con nec -
ted with pathophysiological conditions of botulism,
gas gan grene, antibiotic-associated diarrhea and pse -
u do  membraneous colitis (15).

Similar changes, involving an increase in the pre -
sence of Ser/Thr-GlcNAc on regulatory proteins are
found in diabetic conditions, and may be associated
with overexpression of the key enzyme for Glc to
GlcNAc conversion i.e. glutamine: fructose-6-phos -
phate amidotransferase, but also with a high level of
GlcNAc-transferase transcripts in the beta cells of islets
of Langerhans (16, 17).

The defect in biosynthesis of the GPI-anchor of
granulocytes and B lymphocytes, i.e. in glypiation is
found in paroxysmal nocturnal hemoglobinuria (18).

Profound changes in the expression and structure
of carbohydrate components, resulting from rear -
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rangements of glycan biosynthetic pathways in the
Golgi apparatus (19–21) or activation of particular
onco genes (11, 22) are hallmarks of all types of expe -
rimental and human cancers and are of special interest
for their detection and prevention. A number of chan -
ges that  occur are difficult to classify, but some ge -
nerali zations can be deduced. 

Cancer-associated glycan structures     

There are a wealth of literature reports on gly -
cans and cancer, but their role and complex regu la -
tory mechanisms in their biosynthesis are still not elu -
cidated and the reports are often conflicting. Ge ne  rally,
a can cer-related oligosaccharide pattern is found to
be asso cia ted either with expression and secretion of
inapp ropri ate, for example, incompletely glycosylated
mo  le  cules, or the appearance of new antigens. Many
mo lecular alterations accompany malignant transfor -
mation: changes in sialylation, fucosylation, galacto -
sylation, N-glycan branching and truncation of the O-
glycans of mucins, abnormalities in the expression of
blood group and tissue antigens, etc. (23). In general,
low activity of a2-FucT (fucosyltran sferase) and in -
creased activity of serum ST (sialyl transferases), se -
rum a3-FucT and serum GalT (galac tosyltrans fe rase)
are observed in cancer. 

Increased sialylation is found on both N-linked
and O-linked glycoconjugates (11, 24–26). For in -
stance, mucin production and secretion which is ele -
vated in cancer cells, predominantly comprises si -
alomucin (generally undersulfated). This results in
en han ced activity of differentially expressed a3- (ST3)
and a6-sialyltransferases (ST6). Sialic acid (Neu) can
occur in various linkages and derivatives such as
O-acetyl and N-glycolylneuraminic acid (Neu5Gc).
Increased Neua6Gal and decreased O-acetyl sialic
acid are found in colon cancer, whereas increased
O-acetyl sialic acid is observed in gastric cancer. In
addition, reduction of Neu5Gc was noted in breast
cancer and an elevation in colon cancer. Sialylation of
blood group related carbo hydrate antigens comprising
T and Lewis anti gens may also be typical of cancer. For
instance, incre ased sialyl Tn is found in colon, gastric,
pancreatic and cervical cancers and this is typical of
well differentiated advanced stage cancers and poor
prognosis.

Fucosylation is significantly altered in cancer (11,
27–29). It may be related to greater branching of
oligosaccharide chains, as well as changes (decrease or
increase) in fucosyltransferase (FucT) activity. Dimi -
nished a2-FucT activity influences the expression of
human blood group H or human blood group Lewis:
Leb and Ley antigens. a3-FucT is involved in the
synthesis of  Lex and Ley is higher in cancer than in
normal cells. Increased fucosylation is found in breast,
choriocarcinoma, endometrial carcinoma, and higher
serum fucose levels in ovarian cancer.

As for galactosyltransferase (GalT) activity, this is
elevated in bladder cancer and liver metastasis but
decreased in hepatoma (11, 30, 31). Specifically, the
activity, size, glycosylation and secretion of b4-GalT 
are all altered in cancer, i.e, decreased in colon and
increased in lung, cervical and parotid gland cancer.

Important changes are also related to N-ace -
tylglucosaminyltransferase (GnT) isoenzymes. Among
the six GnT (I-VI), which add bGlcNAc at diffe rent
positions on the trimannosyl core, three (bGnT-III, –IV
and –V) play roles in the structural alterations of
complex-type sugar chains during cancer (11, 32–34).
In addition, GnT-V ectopically produced in epithelial
cells is responsible for morphological trans formation
and tumor growth. An increase in b1,6-branched
complex type sugar chains and the appearance of
terminal Lewis antigens sequences have been observed
in some cancers and are supposed to be the basis for
metastasis correlating with poor prog nosis. For in -
stance, increased branching of N-glycans is found in
colon and hepatoma cancer, and unusual O-glycans in
choriocarcinoma and endometrial cancer.

As for O-glycans, mucin-type oligosaccharides
are often truncated and express blood group asso -
ciated antigens: T, sialyl T, Tn and sialyl Tn (11, 19,
35–38). Increased T and Tn antigens are found in
bladder, breast, colon and gastric cancer, whereas
elevated Tn is observed in liver metastasis, pancreatic
and salivary gland cancer, and increased T antigen in
lung cancer. 

During malignant transformation, blood group
antigens can be increased, decreased or have aberrant
structures, whereas some tumors can express histo-
blood groups which are not compatible with the
erythrocytic blood group due to aberrant synthesis by
blood-group-dependent glycosyltransferases (11, 19,
39, 40). These carbohydrate antigens can be added to
different substrates: N-glycans, O-glycans and glyco -
sphy ngolipids. Loss of blood group antigens is asso -
ciated with bladder cancer, decreased A and B antigens
with lung cancer, diminished ABO antigen with
squamous cell carcinoma, incompatible A and A-like
antigen with gastric cancer, changed blood groups with
prostate cancer and reduced sulfation of mucin blood
groups antigens with colon cancer.

The appearance and sialylation of Lewis antigens
are also dramatically changed in different cancers (11,
41–45). Altered Lewis antigens are found in lung
cancer, and decreased sulfation is typical of breast and
colon cancer. Breast cancer is also accompanied with a
reduction in Leb antigen. Elevated Ley was found in
hepatoma and colon cancer. Lex is associated with
secretor types of cancer and it changes in colon, kid -
ney, liver and prostate cancer. Sialyl Lewis a or CA19-9
antigen is highly expressed on the surface of various
tumor cells, and its serum level is altered in gastro -
intestinal cancers. Enhanced expression of glycosy l -
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transferases i.e. sialyl- and fucosyl-transferases can be
responsible for changes in Lewis antigen expression,
but this can also be due to incomplete synthesis of the
sugar chains of different glycoproteins produced in
normal cells.

Carbohydrates in therapy and diagnostics

Use of native glycoconjugates or chemically syn -
the sized glycomimetics, for replacing an enzyme defi -
ciency or as medicinal agents for inhibition of pathogen
invasion or metastasis, are the basis of various glycan-
based therapies (46–50). Since pathogen infection and
colonization are mediated through the interaction of
adhesins (bacterial lectins) or viral hemagglutinins and
carbohydrates on host tissues/cells, carbohydrates can
act as inhibitors of these interactions and, therefore, be
used in the form of polysaccharide haptens for pro duc -
tion of different carbohydrate-based vaccines. Thus,
the well-known anti-influenza drugs are based on the
inhi bition of influenza virus neuraminidase, whereas
rou tine vaccines against Haemophilus influenzae type b
are generated to polysaccharide-protein conjugates. 

Glycoconjugate vaccines are also emerging as a
therapy in the battle against specific cancers (51).
Carbo hydrate-based anti-cancer vaccines have been
prepared (experimental trials) against Lewis y, which is
overexpressed in a variety of human carcinomas,
aga inst sialyl-Tn for breast and ovarian cancer, or
globo H antigen for the treatment of prostate cancer.

Since inflammatory reactions are often triggered
by carbohydrates, they are also used as part of the anti-
inflammation strategy, some of which rely on the inhi -
bition of selectin-ligand interactions by mimicking sialyl
Lewis x (treatment of rheumatoid arthritis), or inhibition
of Man 6P receptor (52). 

Glycans are also involved in immunological rejec -
tion in xenotransplantation and one in vivo therapy is
based on washing out anti-a-galactose antibodies as
the primary cause of the immune response.

Carbohydrates as therapeutics must fulfill strict
requirements in terms of homogeneity and purity and
their preparation is associated with different technical
problems regarding their chemical synthesis, the bio -
logical techniques used etc (53, 54). Several carbo -
hydrate-based drugs are already on the market, and
many others are in various phases of clinical trials (55). 

In contrast to their clinical application as thera -
peuticals, carbohydrates of viral, bacterial, fungal or
parasite pathogens or human cancer cells have been
widely used diagnostically (56, 57). For instance, diffe -
ren tial diagnosis of infectious mononucleosis and
serum sickness from the healthy state is based on the
reactivity of heterophil antibodies to specific viral carbo -
hydrate antigens, Paul-Bunnell antigen, N-glycolylneu -
raminic acid and Forsmann antigen (57–59). 

Haemagglutination assays or immunological
assays for diagnosis of bacterial infection detect, for
example, carbohydrates from group A strep for Strep -
to coccus pyogenes, cell wall C-polysaccharide of Strep -
to  coccus pneumoniae, genus-specific lipopolysaccha -
 ride of different Clamydia species, surface car bo    hy  d rates
of beta-hemolytic A, B, C, D, F and G streptococci or
bacterial strains that can cause meningitis, like Neis -
seria meningitides group A, B, C, Y, etc. (57, 60). 

Diagnosis based on antibodies or antigens asso -
ciated with fungal diseases including invasive asper -
gillosis and candidiasis detects distinct carbo hydrate
antigens, such as galactomannan or b1,3 glucan, res -
pec  tively (57, 61). The same holds true for the para -
site-specific carbohydrates of Leishmania, T. brucei, T.
cruzi, Echinococcus multilocularis and Trichinella
species (57, 62).

Well known examples are also glycosylated hemo -
globin in monitoring diabetic patients (63), or abnor -
mally glycosylated bands of erythrocyte membranes, as
well as carbohydrate-deficient transferrin for diagnosis
of inherited or acquired disorders of glycosylation and
alcohol abuse (64, 65).

Concerning malignant transformation, tumor-
associated antigens, oncofetal or de novo synthesized
antigens are well known as targets for diagnosis of
diffe rent types of tumors. They comprise: carcino -
embryonic antigen (CEA; colonic, breast, bladder),
CA15-3 (breast cancer marker), CA19-9 (pancreatic
and colonic), CA125 (ovarian cancer), prostate-specific
antigen (PSA; prostate cancer), a-fetoprotein (AFP;
hepa tocellular carcinoma), as well as a number of
sialylated/non-sialylated Lewis antigens (T, Tn, TF). 

Glycoproteins as analytes 
in clinical chemistry

Many assays, widely used in everyday laboratory
practice, actually detect or measure the activity or
concen tration of different serum or tissue glycan/gly -
cotope/glycoproteins, but without taking into account
the specificities of their structure. There are 109 diag -
nostic tests currently approved by the US FDA to
measure protein concentration alone, and among 18
additional assays which assess posttranslational modi -
fications, six detect carbohydrate structures: LCA (Lens
culinaris) – reactive a-fetoprotein, the glycated form of
albumin, bone specific alkaline phosphatase, LDL,
CA19-9 and carbohydrate deficient transferrin (66).

As one specified molecule should fulfill some cri -
teria to be considered as a disease marker, the corres -
ponding assay must meet certain analytical require -
ments for reliable use for clinical purposes (67, 68).
Glycoproteins as analytes directly influence the ana -
lytical performance of corresponding assays due to
their heterogeneous nature (67, 69). In general, the
source of variation of heterogeneous analytes can be
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related to: splicing variants, sequence/isoforms, che -
mical modifications or degradation, oligomeric state,
ligand binding (metal, other proteins and cofactors),
degree of structuration or different conformational
states. This implies that one test must actually
measure/detect different molecular forms and poses
the question of inter-assay comparability. Thus, there is
no WHO reference material which is specified to
consist of a distinct form but they may contain a
mixture of molecular forms. In addition, due to their
heterogeneous nature, reference materials may react
differently in different assays depending on the
specificity of the antibody reagents.  

In contrast to diagnostic analytes falling in cate -
gory A and comprising chemically well-defined com -
pounds where the results of measurements are trace -
able to SI units, glycoproteins belong to category B
(67). Tests for biological substances from category B
are based on their functional activity, immunoreactivity
or nucleic acid amplification. This means that assay
results are usually expressed as arbitrary units, i.e.
WHO international units. 

Striking examples of heterogeneous analytes are
human chorionic gonadotrophin (hCG) and prostate-
specific antigen (PSA). The former includes a complex
heterogeneous family of intact, dissociated or degra -
ded hCG-related polypeptides differing in carbohydrate
content (70, 71). The cross-reactivity of these forms
varies among different antibodies used in commercially
available tests. Similarly, experimental evidence indi -
cates at least 30 immunoreactive forms of free PSA in
seminal plasma or serum. It is known that metrological
traceability and standardization of immunometric
assays for free or total PSA is an actual problem and a
still unresolved issue in laboratory practice, having a
clinical impact on information about prostate cancer, its
risk and detection rate (72–74).

When considering glycans/glycoproteins as ana -
lytes, one important issue is that they can be related to
the genetics and age of patients, which influences the
reference range for particular pathophysiological
conditions. For instance, the glycan epitope CA 19-9 or
sialyl Lea, exhibits genetic variation within populations,
so secretor type persons may have a high background
level of these epitopes normally with values exceeding
up to 6-fold the established upper reference limit (75).

Generally, clinical expectations are primarily rela -
ted to discovering highly sensitive and specific bio mar -
kers, in order to eliminate any doubts and contro versies,
which are often encountered when interpreting assay
results. This is of special importance when consi dering
tumor marker assays of low specificity and sensi tivity.
This makes them almost completely inappro priate for
early detection of and differentiating between benign
and malignant conditions (76). However, due to the
intrinsic heterogeneity this cannot be solved, but it can
be improved or partially overcome by introduc tion of
additional tests as already achieved for some analytes.

The »omics« era: The glycome 
as a source of new biomarkers

In the »omics« era, the glycome, a glycan ana -
logue of the proteome and genome, holds consider -
able pro mise as a source of new biomarkers (77). The
glycome refers to the entire set of glycans in one
organism, and the term glycomics is derived from the
chemical prefix for sweetness or a sugar, »glyco-«, and
was formed to follow the naming convention estab -
lished by genomics (which deals with genes) and pro -
teomics (which deals with proteins). Thus, glycomics,
as the systematic study of all glycan structures of a
given cell type or organism, is expected to answer many
open questions and fill phenotype-genotype knowledge
gaps (78). In the first place, this is a question of the
biological meaning of diversity and constant dynamic
structural changes in biological systems. However, un -
like genomics and pro teomics, where molecules with
similar chemical pro perties are examined using single
analytical platforms, glycomics must cope with an in -
herent level of glycan complexity, i.e. a huge chemical
diversity and broad dynamic range not seen in other
areas of applied biology (79). 

In spite of this, glycomics offers considerable
possi bilities for the translation of basic discoveries to
clinical practice in general or personalized medicine.
Designing a strategy for biomarker discovery, new prin -
ciples and platforms for the analysis of relatively small
amounts of numerous glycoproteins and accurate moni -
 toring at the level of the glycoproteome are gradually
being developed (80–82). Screening of different types
of glycomolecules, selection of differentially expressed
components, their enrichment and purification or iden -
ti fication are the most challenging parts of experi -
mental and clinical glycoproteomics. 

The importance of glycomics has been fully recog -
 nized and many national and international research
centers and consortiums have already been founded
(83, 84). Under the Human Proteome Organization
(HUPO), the Human Glycome/Proteomics Initiative
(HGPI) was established in 2002, with one task related
to biomarker discovery, especially tumor markers (85,
86). 

Unfortunately, reliable biomarkers are not avai -
lable for the majority of cancers and there is also a lack
of secreted biomarkers that can be detected through
non-invasive assays, such as blood tests. Among at least
100 cancer biomarkers used today, most are glyco -
proteins and glycolipids. Measurement of serum con -
centrations of tumor markers in different types of immu -
nometric assays employing various monoclonal
anti   bodies to the protein portion of the molecule, is
often associated with problems of low specificity for can -
cer detection. One reason is that concentrations can be
elevated during both benign and malignant processes. 

Comparative studies of the sugar chain structures
of different tumor markers have indicated specific
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structural alterations associated with malignant trans -
for mation, in relation to glycan branching, sialylation
and fucosylation. For instance, intensive structural
inves ti gations aimed at improving diagnostic useful ness
have pointed to extreme heterogeneity, i.e. the exis -
tence of many different molecular glycoforms of  PSA
and CA125.

PSA comprises heterogeneous molecules differing
in their polypeptide backbone as well as in carbo hy -
drate composition, resulting in the existence of diverse
PSA isoforms (87–92). Besides the major PSA sub -
population bearing biantennary N-glycan, PSA mole -
cules with uncommon N-glycan structures, such as
monoantennary glycan chains or different outer chain
moieties, have been detected, and PSA of cancer origin
was found to show decreased glycosylation compared
to PSA from BPH and seminal plasma.

Moreover, the primary structure of CA125 con -
tains numerous potential glycosylation sites. Data on
glycosylation of OVCAR-3 cell line-derived CA125 in
combination with data on both pregnancy- and cancer-
associated CA125, obtained by lectin-affinity chroma -
tography as a method for structural assessment, point
to the existence of glycosylation differences (93–97). 

These glycan modifications should be better in
distinguishing between benign and malignant condi -
tions than the measurement of marker concentrations
alone, which is widely used in practice. Thus, cancer-
associated changes in glycosylation could improve the
clinical utility of known tumor markers (98–100).

The diagnostic significance of microhetero ge -
neity of glycoproteins has been confirmed by the FDA
approval of fucosylated alpha-fetoprotein (L3 fraction)
as a marker of primary hepatocarcinomas in 2006
(101, 102). Investigation of the structural properties of
tumor markers as possible targets for the improvement
of diagnostics is gaining more attention and expanding
nowadays.

Glycomics: strategies and technologies

Introducing the concept of glycomics offered
potential for rediscovering glycans as biomarkers and
enabled new strategies for their application in clinical
chemistry (103–105). The experimental workflows are
aimed at either the discovery of a new marker or find -
ing specific disease-related structural alterations of
known markers. Although most reported studies deal
with an individual specific molecule (glycoprotein) as a
diagnostic indicator, focus has been moved to the
investigation of general changes in total glycans, i.e.
glycoprotein profiling at the level of cells, tissue and
biological fluids as more informative. 

Different biological sources, such as serum,
urine, saliva, or various cell or tissue extracts are objects
of glycoprofiling. In spite of being the most complex,
serum is most often used (106–108). Most serum

proteins are glycosylated with common glycan struc -
tures. Since biomarkers are usually among low abun -
dance proteins and, in structural terms, are supposed
to be associated with uncommon glycans, removal of
the most abundant proteins and enrichment at glyco -
protein or glycopeptide levels are part of various expe -
rimental strategies (109). Thus, the main endea vors
have been to create strategies how to a) pick up rele -
vant changes relating to the heterogeneous molecules
themselves; b) catch the early appearance (preceding
the disease) of glyco-markers, i.e. how to detect rele -
vant glyco-changes occurring at a very low level.

Consequently, enrichment of glycoproteins by
affi nity or chemical selection has been developed.
Carbohydrate-binding proteins, such as lectins or
antibodies, are used for affinity selection in different
experimental techniques. A single lectin with preferred
narrow specificity or multiple lectins can be employed
to increase selectivity during the enrichment phase
(110–113). Hydrazine or boronic acid chemistry is
mostly used for chemical selection (114–116).

The enrichment step is followed by release of
glycans for further structural characterization. They can
be cleaved either enzymatically (N-linked) or che mi -
cally by reductive beta elimination (O-linked) or
hydrazinolysis (N- and O-linked glycans) from the tar -
get and subjected to analysis (117–119). Glycan pools
can be analyzed directly by mass spectrometry or be
prefractionated. 

Commonly used techniques in glycan analysis are
high resolution mass spectrometry (MS) and high
performance liquid chromatography (HPLC). Rou tine
HPLC (reversed phase, normal phase and ion
exchange) analyses of N- and O-glycans are performed
after tagging the reducing end of the sugars with a
fluorescent compound (reductive labeling) (120, 121).
Fractionated glycans can be further analyzed by
MALDI-TOF-MS (matrix-assisted laser desorption/
ioniza tion time of flight mas spectrometry) to gain
information about structure and purity. To increase
their ionization, glycans can be chemically deri vatized
using heavy isotopes and permethylation or methy -
lation (122–125). By choosing porous graphitic carbon
as the stationary phase for liquid chromato graphy, even
non-derivatized glycans can be analyzed. Mass spectro -
metry is used for detection here but, in contrast to
MALDI-MS, with an electrospray ionization (ESI) in -
terface. 

Thus, mass spectrometry, such as MALDI-TOF
has a central place in experimental workflows for
glycomics, due to the low detection limit and specificity
(126–129). At present, new MS-based approaches
are being developed, like multiple reaction monitoring
(MRM), with the potency to quantify target proteins in
unfractionated samples (130–132), and stable isotope
standards, as well as capture by anti-peptide (or anti-
carbohydrate ) antibodies (SISCAPA) to enhance MRM
(133, 134).
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In addition to MS, lectin and antibody arrays also
provide high-throughput screening of many samples
containing glycans (135–137). They are based on
reactions between chip-immobilized naturally occurring
lectins or artificial monoclonal antibodies, and labeled
glycoprotein samples. Although array technologies are
less complicated than MS, interpretation of the results
is tedious work and there is a constant need for
improvement or development of new bioinformatical
tools (138). 

Existing methodology for glycome analysis cannot
be compared to that supporting genomics and pro te -
omics, owing to lack of cloning, amplifying or seque n -
cing techniques, and this is one limitation for more
rapid progress in the field. 

Concluding remarks

The official NIH definition of a biomarker is: »a
cha racteristic that is objectively measured and eva lu -
ated as an indicator of normal biological processes,
pathogenic processes, or pharmacologic responses to
a therapeutic intervention«.

Glycoproteins have been used as disease and
prognostic markers for a long time. Nowadays we are

aware that glycans are unique for their bioinformative
potential in vivo, and as targets to yield sensitive and
discriminative in vitro diagnostic tests, including use
singly or among a panel of different tumor markers in
multiplex platforms. Biomarker discovery is a multistep
process and most current glycomic data are mainly
related to the so-called discovery phase, as the first one
proceeding to validation and standardization steps. As
additional disease-associated structural and functional
changes are to be defined, the number of molecular
techniques intended to be used in clinical chemistry will
expand. There is a constant need for cooperation
between scientists in glycobiology and glycotechnology
aiming at the development of a rapid and cost-effective
platform accommodated to everyday laboratory prac -
tice. Glycomics still awaits full exploration in biome -
dicine, especially in the deliverance of new analytical
protocols in the field of biomarkers.
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